Projects & tools


Edelta is a tool based on a DSL for specifying reusable libraries of metamodel refactorings. Edelta is implemented with Xtext and Xbase, thus is provides a fully-fledge Eclipse editor with syntax highlighting, code completion, error reporting and incremental building, not to mention debugging. Thanks to Xbase, it is completely interoperable with Java and its type system, allowing the developer to access any existing Java libraries. Edelta allows the developer to have an immediate view of the evolving metamodel before actually changing it, since it interprets the refactoring specifications on the fly, while the developer is typing in the editor.

Reference paper: Ludovico Iovino, Lorenzo Bettini, Alfonso Pierantonio and Davide Di Ruscio

Further details and download at

PADprof is a tool that detects software performance antipatterns from load testing and profiling data. It takes as input the profiler results provided by YourKit that show features to profile CPU, memory, and threads. It provides as output a report including, for each detected antipattern, statistics on the antipattern detection analysis and the involved suspicious methods.

Reference paper: Catia Trubiani, Alexander Bran, André van Hoorn, Alberto Avritzer, Holger Knoche.
“Exploiting Load Testing and Profiling for Performance Antipattern Detection”,
in the Journal of Information and Software Technology, Elsevier, volume 95, pp. 329-345, 2018.

PADprof can be downloaded from the following link:

SoEfTraceAnalyzer is a tool that automates the traceability between software architectural models and extra-functional analysis results by investigating the uncertainty while bridging these two domains. It makes use of patterns and antipatterns to deduce the logical consequences between the architectural elements and analysis results and automatically build a graph of traces to identify the system criticisms.

Reference paper: Catia Trubiani, Achraf Ghabi, Alexander Egyed.
“Exploiting Traceability Uncertainty between Software Architectural Models and Extra-Functional Results”,
in the Journal of Systems & Software (JSS), Elsevier, volume 125, pp. 15-34, 2017.

SoEfTraceAnalyzer can be downloaded from the following link:

PANDA (Performance Antipatterns aNd FeeDback in software Architectures) is a tool for addressing the results interpretation and the feedback generation problems by means of performance antipatterns, that are recurring solutions to common mistakes (i.e. bad practices) in the software development.

Reference paper: M. De Sanctis, C. Trubiani, V. Cortellessa, A. Di Marco, M. Flamminj.
“A Model-driven Approach to Catch Performance Antipatterns in ADL Specifications”,
in the journal of Information and Software Technology, Elsevier, volume 83, pp. 35-54, 2017.

PANDA can be downloaded from the following link:
Chaining of SR-aware and SR-unaware Service Functions

Segment Routing (SR) is a source routing paradigm that can benefit from both MPLS and IPv6 data planes to steer traffic through a set of nodes. It provides a simple and scalable way to support Service Function Chaining (SFC). In this demo, we propose an NFV architecture based on SR and implemented in Linux environment. It allows chaining of both SR-aware and SR-unaware Service Functions (SFs). In order to include SR-unaware SFs into SR SFC, we use our SR proxy implementation: srext, a Linux kernel module that handles the processing of SR information in behalf of the SR-unaware SFs. As SR-aware SFs, we use two of our implementation; SERA and SR-aware snort. SERA is a SEgment Routing Aware Firewall, which extends the Linux iptables firewall, and capable of applying the iptables rules to the inner packet of SR encapsulated traffic. SR-aware snort is an extended version of snort that can apply snort rules directly to inner packet of SR encapsulated traffic. We show the interoperability between SR-aware and SR-unaware SFs by including both of them within the same SFC.

Full description and tools available at:


Theoretical Foundations for Monitorability

Project type Icelandic Research Found Project Grant
Project members Luca Aceto
Links project details

DESPACE: DEtecting and Solving Performance Antipatterns in Cloud Enviroments

Project type Microsoft Azure Research Award
Project members Catia Trubiani
Links project details